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1 Solve the equation

2x + 1
2x − 1

= 5,

giving your answer correct to 3 significant figures. [4]

2 Show thatã π

0
x2 sinx dx = π

2 − 4. [5]

3 It is given that cosa = 3
5, where 0◦ < a < 90◦. Showing your working and without using a calculator

to evaluatea,

(i) find the exact value of sin(a − 30◦), [3]

(ii) find the exact value of tan 2a, and hence find the exact value of tan 3a. [4]
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The diagram shows the curvey = sinx
x

for 0 < x ≤ 2π, and its minimum pointM.

(i) Show that thex-coordinate ofM satisfies the equation

x = tanx. [4]
(ii) The iterative formula

xn+1 = tan−1(xn) + π

can be used to determine thex-coordinate ofM. Use this formula to determine thex-coordinate
of M correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

5 The polynomial 2x3 + 5x2 + ax + b, wherea andb are constants, is denoted by p(x). It is given that(2x + 1) is a factor of p(x) and that when p(x) is divided by(x + 2) the remainder is 9.

(i) Find the values ofa andb. [5]

(ii) Whena andb have these values, factorise p(x) completely. [3]
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6 The equation of a curve is

x ln y = 2x + 1.

(i) Show that
dy
dx

= − y

x2
. [4]

(ii) Find the equation of the tangent to the curve at the point where y = 1, giving your answer in the
form ax + by + c = 0. [4]

7 The variablesx andt are related by the differential equation

e2t dx
dt

= cos2x,

wheret ≥ 0. Whent = 0, x = 0.

(i) Solve the differential equation, obtaining an expression for x in terms oft. [6]

(ii) State what happens to the value ofx whent becomes very large. [1]

(iii) Explain whyx increases ast increases. [1]

8 The variable complex numberß is given by

ß = 1+ cos 2θ + i sin 2θ,

whereθ takes all values in the interval−1
2π < θ < 1

2π.

(i) Show that the modulus ofß is 2 cosθ and the argument ofß is θ. [6]

(ii) Prove that the real part of
1ß is constant. [3]

9 The planep has equation 3x + 2y + 4ß = 13. A second planeq is perpendicular top and has equation
ax + y + ß = 4, wherea is a constant.

(i) Find the value ofa. [3]

(ii) The line with equationr = j − k + λ(i + 2j + 2k) meets the planep at the pointA and the planeq
at the pointB. Find the length ofAB. [6]

10 (i) Find the values of the constantsA, B, C andD such that

2x3 − 1

x2(2x − 1) ≡ A + B
x
+ C

x2
+ D

2x − 1
. [5]

(ii) Hence show that

ä 2

1

2x3 − 1

x2(2x − 1) dx = 3
2 + 1

2 ln(16
27). [5]
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